JOURNAL OF COMPUTATIONAL PIYSICS 112, 24-30 (1994)

Numerical Simulation of AC Plasma Arc Thermodynamics
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A mathematical model and approximate analysis for the energy
distribution of an ac plasma arc with a moving boundary is developed.
A simplified electrical conductivity function is assumed so that the
dynamic behavior of the arc may be determined, independent of the gas
type. The model leads 1o a reduced set of non-linear partial differential
equations which governs the quasi-steady ac arc. This system is solved
numerically and it is found that convection plays an impartant role, not
only in the temperature distribution, but also in arc disruptions,
Moreover, disruptions are found to be influenced by convection only
for a limited frequency range. The results of the present studies are
applicable to the frequency range of 10-102 Hz which includes most
industry ac arc frequencies.  '© 1994 Academic Press, Inc.

1. INTRODUCTION

Plasma arcs have received increasing attention recently
for a variety of applications in engineering and physics
[1-9]. There are mainly three types of plasma arcs—dc
arcs, ac arcs and rf arcs. It is known that ac arcs offer certain
advantages over 1l plasma generators and de devices; e.g.,
generation of ac arc plasma offer the possibility of easy
scaling to higher power levels. Moreover, ac arc plasmas are
also relevant to circuit breaker theory [3-5, 107,

Some of the recent work on ac ares has been directed
toward the study of arc heaters which involve high enthalpy
gas flows. However, there has been relatively less work to
date in this area compared with that available for dc arcs,
since the ac arc physics is more complex, e.g., it is well
known that there is a complex interaction between the arc
temperature field and the surrounding {low field. Further-
more, the non-linear dependence of transport properties
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upon femperature make analysis of the problem cspecially
dilficult.

The present work was initiated in an attempt lo analyse
and understand some of the lundamental processes that
occur in an arc type of gas heater, employing an ac power
supply. The details of this device, as well as some analytical
investigations of its behavior have been reported in the
literature [ 1,6, 7. 9].

Moreover, there have been several related numerical
studies, e.g., Ragaller er al [3] developed a numerical
modei for studying the decay of a hot-gas channel after
current-zero using transformed equations. A two-dimen-
sional calculation based on the assumption of constant
pressure in the radial direction was also made by Mitchell
et al. [4]. In this latter model the evelution of the arc is
followed from a steady state through the current ramp and
during the subsequent [ree decay. Some related recent
results are given in [5] under the assumption that radial
gradients are negligible. In the present investigation we
utilize the standard model [1], including nonlinear convec-
tive effects and with relaxed radial gradient assumptions.
Hence this provides a more complete model of the physics
that permits us to investigate convective cffects more
realistically during the entire interval of interest rather than
only during the current ramp. The new model retains many
of the features of previous models of this type and leads to
an efficient decoupled solution algorithm suitable for PC
and workstation computations.

Since the ac arc current is driven by the alternating
voltage, it follows that temperature, density, and the extent
of the plasma vary periodically. The fluctuation of the arc
boundary does affect the arc properties and this case has
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been previously examined [1, 7, 9]. However, the nature
and importance of convective effects have received relatively
little attention in previous work, although it has been
suggested that convection might be significant [1]. Also,
Wu and Chen [7] studied the convection problem with a
direct variational method based on the assumption that the
boundary position varies as p = p, + 8g cos wt, where p, is
the average arc radius and dg is an amplitude predeter-
mined by some experimental resuits.

In the present paper, a cylindrically symmetric, dynamic,
and wall-stabilized ac arc is considered. A mathematical
model and approximate analysis is developed. The focus
of the accompanying numerical studies is the non-linear
convective effect. It is also shown that some ac arcs may
be disrupted due to the effects of convection on the arc
boundary oscillation.

2. MODEL OF THE PLASMA AC ARC

Let us consider the case when an ac arc discharges in a
tube of radius R whose walls are maintained at a constant
temperature without carrying current. A schematic diagram
of the type of ac arc geometry considered in the present
study is shown in Fig. 1. Regions I and I1 are the conducting
and non-conducting zones, i.e., the arc column and transi-
tion regions, respectively, The domain is axisymmetric and
the location of the boundary r, oscillates at the ac fre-
quency. Since we are interested in the problem where heat
conductivity x depends on temperature T, it is convenient to
introduce the heat flux potential

S:fT k(T) dT. (1)
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FIG. 1, Sketch of plasma arc cylinder.

potential § reach their maximum values at the arc center
(r=0) and decrease with increasing r to o(r,})=0 and
S{ry) =S, (the value at which the gas begins to be ionized).
It is known that the value S, depends mainly on the physical
properties of the gas. For the purpose of the present analysis
concerning dominant convective effects, we are able to
make the following simplifying assumptions:

1. The arc is long enough that the end effects can be
ignored;

2. The plasma geometry remains axially symmetric;

3, Heat transfer by radiation is negligible;

4. Any magnetic field induced by the arc current is
insignificant;

5. The heat diffusivity A = x/mc, is a constant, where m
and c, are mass density and specific heat, respectively.

6. The electric conductivity o is a linear function of the
heat flux potential S:

g=0,

U=G(S7S]),

rosr< R

(2}

O<r<rys),

where ¢ and §, are known for the gas. For example, at
pressure p=1 atm: ¢= 1.5 mhos/W and §,=5W/cm for
Ar; similarly, a=1mhos/W and §,=100W/cm for N,
[1, 9]. In addition it is assumed that the arc gas is isobarig
and quasi-neutral.

A result of the above assumptions is that the energy
conservation equation combined with a suitable form of
Ohm’s law and mass conservation equation suffice to
describe the arc column properties.

3. THE FUNDAMENTAL EQUATIONS

The preceding assumptions imply that the problem is
cylindrically symmetric. Furthermore, in the absence of
charge separation and an induced electric field, there is only
an axial component to the total current and this is also inde-
pendent of radius. The energy equation and mass equation
in terms of S and T reduce to [7]

voS 14 oS . 138
_ree 220 - =-22 0gr<
2or Tra o TS SUET=g 50 Osrsne ()
1¢d 95 ©vadS 14§
S I <r<
ror or Adr Ao r<R - {4)
Hor) v dT 10T
_______ <r<R,
ror Tar Tot 0, O<r<k (3

where 4 =«/mc, is a heat diffusivity constant; E, T, v, , m,
and ¢, are the electric field, temperature, velocity, thermo-
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conductivity, mass density, and specific heat, respectively
(1, 9]. Note that Eq. {(3) is derived from the mass conserva-
tion and perfect gas state equation and is decoupled from
Egs. (3)-(4) if the convective velocity vanishes.

We first introduce a transformation that eliminates the
explicit dependence on the moving boundary. For the inner
region {i.e, region (I), the transformation takes the form

x=r/rolt), 0<r<ry(t), {6)

and for the outer region (i.e., region I1)
o Rer (h<r<R 7
}’_R_ro({)’ r() R LY ( )

50 that both x and y range between zero and one.

Next, to construct a set of equations which may apply to
any gas and facilitate comparison with other studies [ 1, 97,
we introduce several dimensionless variables. In particular,
let

§-8,
= 0<r<r,,
U S =5 g
s _g (8}
= 1= é ‘-'~<-. R5
V S,=5) rosr
where S(rq) =S8, and S(R)=§,.
Finally, we introduce
(ty=roft)/R E=a"RE. I= !
P o ’ ’ (5, —58,) Ra'"
e . (9)
6=-—, T=-,
A )

where 8 is the usuval relaxation time scale for the heat
conduction problem and 7 denotes a value for the electric
current.

Our main attention in the present study is focussed on the
rele of convection. Accordingly, let us simplify the problem
as follows: Define an average value & of thermo-conduc-
tivity based on the integral mean value so that from Eq. (1),
kT=5(if T ,,=0). Then, Egs. {2)-{4) can be expressed as

2

PU =1 (U, 45 XU PEU— vl (10)
PV, = V”ﬁl—#% K‘.—%%)’V},—vnpl v, (11)
v"=U+C, (i Uy—xpU, +pU.) (12)
Uu_,?m eV, —yoV,—p V), (13)

where
(1=p) UL 1)=pV (1, 1) (14)
E ! I=1,cos wf
=_— ={,cos w
2np? [y xUdx’ ¢ 008 @V,
S _ . _dp
CI—SI_SZ*—CH: p=1-p, P"E-

“w_ [T

Here, subscripts “x”, “y” and “t” denote corresponding
derivatives, and “I” and “II” refer to regions I and II (recall
Fig. 1}).

The boundary and initial conditions are, respectively,

U0,7)=0, U(l,1)=0,
V,1)=1, W(l,t)=0
00, 1) =0,  p,(0,7)=0
and
1y Jo(Bx)
U(x’o)hEndel(ﬁ)
In{{1—p(y)pa)
Wiy, ) = ——F————
In(1
n(zj:::) (15)
_ - o
R TETR
EZE,;=£“, P=Pas
d

where J, and J, denote zero-order and first-order Bessel
functions, and subscript “d” refers to the dc value.

4. NUMERICAL METHOD

We begin by noting that the linear stability condition for
an explicit difference algorithm suggests that the timestep
satisfy

Ar<i(1=p) (dy),

where Ay is the grid size. In the present problem, as ro — R,
then (1 — pg) will become very small. For example, in some
applications (1 — p) may be less than 10", and this implies
that the time step must be less than 3{4y)* x 10~? 5o that
the stability restriction will degrade efficiency. Hence, in the
present work an implicit scheme is adopted and non-linear
iteration is used for Eqs. (10), (11), and (12)-(13), respec-
tively. This leads to the following discretized problem:
Central differencing Eq. (10) and Eq. (11} at grid point ¢
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and implicitly for time step », we obtain the pair of
tridiagonal systems
a, U7 va; U7+ a, U7, =UT"! (16)

bV by Vb VI =V (17)

where i and # denote space position x;=(i—1) Ax, time
level t,=(n— 1) 4z, and

a7 —1 1 Py
= — 1 204 ~—— 3 L
o =S g e~ i) )
At 2 Pt
= _ plE?
as pZ _(dx)2+£f‘f Iy :l (19)
atf 1 po
== —— 1+ x?ps)~ L
9= | Taxx, U ERPP) T 2Ax] (20)

— At [2 1 . vndr]
b= ——— —ppibto——1 (21)
Yaptaylay e —w PP T

24t

b=t 2
2=t (22)

—At [ 2 1 ) v".dt]
by = S — +ppm——2— 1 (23)
’ Myp?[dy pii—y Ty

Values {a,} and {b,} for the timestep are set initially at the
values corresponding to the time level (n — 1), and updated
iteratively as (16) and (17) are solved by decoupled itera-
tion. Furthermore, v; and v,; are defined by (12), (13) and
in the decoupled iteration we integrate to write

x pUr
b= (U + C,)j0 3 dx

U+,

—f)(U'ﬁ'Cl)r xU,dx (24)

o (U+Cy)

YD v

T

op={(V+Cy) s VT Cnl

dy

. * Vv.y
—pV+ CII)J- -

___—_d,
0 (V+C“)2 Y

(25)

where the expressions on the right are determined from the
present iterate. During each iterate, the plasma boundary
position p is corrected using the condition in Eq. ({4). In the
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FIG. 2, dp’/dt makes no significant difference for dimensionless heat
flux potential ¥/ (upper curves) and arc radius p (lower curves) when
wl =60 and p,=06.

linearized iteration process, values in g, and b, are iteratively
updated using successive approximation. [teration proceeds
until a specified tolerance {<107° in the subsequent
calculations) on successive iterates is met in each timestep.
This decoupling leads to an efficient scheme for the
problems of interest here. The calculations below are made
using a fixed timestep integration scheme. An adaptive
timestep procedure is being developed for computations
where wf is small [6].

Since the boundary position is thermally determined, it is
reasonable to expect that sometimes the moving boundary
effect is unimportant. Specifically, when w or 8 is large, one
expects that there is only a small change in the arc structure.
It has been verified theoretically that the perturbation to the
ar¢ boundary position decreases as (w#)~'* [8]. For
example, the comparison of results for heat flux potential
U and for arc radius p at wbf =60 in Fig. 2 indicate that
the assumption dp’/dt=0 is reasonable and is therefore
assumed in subsequent computations.

5. NUMERICAL RESULTS AND DISCUSSION

In order to compare the convective and non-convective
cases, we define the departure value 84 for a quantity 4 by

C2KA4,) = {40

A=A T A

where (- ) denotes the time averaged value and subscripts
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FIG. 3. Heat flox U, {convective), U, {nonconveciive} and arc
radius g, p, for wf =100, p,=08.

n and ¢ denote non-convection and convection cases,
respectively.

As a first test problem let us consider the cases of an ac arc
with p_ =08 and p_=0.6, respectively; at p.=0.8 with
wl =100, 60, and 20, the energy distributions at the arc
center and boundary positions of the arc change in quite
different ways {see Figs. 3-5). In particular, we see that the
fluctuation § U increases from 5% to 20% and ép from 10%
to 30% when the dimensionless frequency is reduced from
100 to 20. Meanwhile, the (convection) arc boundary
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FIG. 4. Heat flux U/, (convective), U, (nonconvective} and arc
radius p,, p, for wf = 60, p,= 0.8,
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FIG. 5. Heat fiux U, (convecuve), U, {nonconvective) and arc
radius g,., p, for wl =20, p,=08.

oscillates with greater amplitude than that of the (non-
convection) arc. Hence it follows that convection may play
an important role in regard to arc boundary movement,
espectally for low frequency arcs.

At p . =046, with w8 =100, 60, 20, the results in Figs. 6-8
lead to the following interesting observation: when the
dimensionless frequency wf = 20, arc disruption may occur
for p;=0.6 (see Fig. 8, where p, is a minimum) due to the
influence of convection, but the arc can work stably when
ps=038 (recall Fig. 5). A possible interpretation is that a
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FI1G. 6. Heat flux U, (convective), U, (nonconvective) and arc
radius p,., p, for wf =100, p,=0.6.
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FIG. 7. Heat flux U, (convective), U, (nonconvective} and arc
radius p,., p, for wf =60, p,=06.

thicker arc has a greater thermocapacity which prevents the
arc temperature from dropping too rapdly during the
current-zero regime. This would enhance arc stability.

The results in Figs. 3-8 indicate that U/, is slightly smaller
than U, in all cases since energy is also transported through
convection in the former case and the internal energy is
lower. The results also suggest that there is a slight phase
shift between the respective solutions for the convective and
non-convective cases (as one might anticipate in view of
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FIG. 8. Heat flux U, (convective), U/, {nonconvective) and arc
radius g, p, for wf =20, p,=06.
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FI1G. 9, Electric field E, (convective), E, (noncenvective) and
current [ for wf =60, p,=0.6,

thermo-inertia). The arc boundary phase shift appears to be
more significant and the underlying mechanism warrants
further study.

Some interesting results concerning the variation in elec-
tric field strength can be deduced from Figs. 9-12. When
convection is included, the electric field displays a more
sharply rising behavior immediately following the current
zero passages than in the model excluding convection. The
convective resuit for the electric fieid is “fiatter” and is in

15.0 r —
10.0 |
5.0

0.0

Electric field and current

-10.0
0.00

0.10
Dimensionless time ©

0.20

FIG. 10, Electric field E. (convective), E, (nonconvective} and
current { for wf =60, p,=0.8.
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FIG. 11. Electric field E,. {convective}, E, {nonconvective} and
current [ for wd =20, p,=0.6.

better agreement with the experimental result [11]. We can
interpret this as follows: the underlying physics implies that,
since the current is specified, the electric field required to
produce this electron flux in a smaller cross section should
become larger and remain so until enough energy has been
added to appreciably increase the column conductance. In

10.0 + - .
—-— Enly

Electric field and current

Dimensionless time

FIG. 12, Electric field E, (convective), E, (nonconvective} and
current { for w8 =20, p,=038.

fact, it is because the radius becomes smaller that a higher
clectric field is needed to support the specified electric
current. In other words, convection makes the boundary of
the arc oscillate to smaller radius values so the specified
current has to be maintained by a stronger electric ficld.

6. CONCLUDING REMARKS

In order to study the properties of a dynamic arc at higher
current levels, some limitations of the present analysis must
be removed. In particular, the radiative term should be
included in the energy equation. Also, at some current level
the strength of the self-induced magnetic field will become
significant and a coupling between the energy equation and
the continuity equation with Maxwell’s equation will result.
The introduction of the integral average £ in S=#&T will
also restrict the utility of the model (although it facilitates
comparison with previous work involving nonconvective
models). Finally, the solution in the present study is not
appropriate for thermaily fast or low-frequency arcs. Studies
are now in progress using a time-adaptive scheme to
examine these effects [6].
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